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Abstract-The buckling of layered plates is examined in the context of finite deformation incom­
pressible nonlinear elasticity. Previous work has shown how buckled configurations are modified,
and buckling loads reordered, for those buckled states that are natural extensions of previously
known solutions corresponding to an isolated single neo-Hookean layer. Here we examine the
possibility of new solutions that have no such isolated layer counterparts. In addition to two
families that are extensions of isolated layer solutions. we find two additional families of buckled
configurations for the case of a symmetric three-ply laminate and we find one additional family of
buckled configurations for the case of a two-ply laminate. All of these new families of solutions
have an associated wrinkling load which is a function of the stiffness ratio of the two neo-Hookean
materials which form the individual layers. This new wrinkling load is higher than that of the
wrinkling load associated with the previously known buckled solutions.

I. INTRODUCTION

The buckling behavior of nonlinearly elastic layered structures can depart significantly from
that of a single isolated layer. As regards the latter, Sawyers and Rivlin (1974, 1982)
employed the theory of small deformations superposed onto finite deformation (Biot, 1965)
to determine buckling loads leading to plane strain inhomogeneous deformations in thick
rectangular (single layer) plates. Their analysis, which applies to a fairly general class of
isotropic incompressible nonlinearly elastic materials, indicated that the associated buckling
can occur in either flexural or barrelled mode shapes with any integer number m of half­
wavelength ripples in the direction of thrust. Furthermore the buckling loads associated
with the onset of these various deformations are ordered sequentially with the ripple number
m, beginning with m = I flexure and proceeding to m = C1J flexure, which occurs at a finite
value of buckling load and so is identified as a wrinkling instability. At even greater loads
the barrelling deformations are initiated, beginning at m = C1J barrelling (at the same
wrinkling load) and then proceeding in reverse order toward m = I barrelling at the largest
value of load.

The intricate nature of buckling in elastic multi-layers has received attention dating
back to studies by Biot (1968) who identified highly localized buckling deformations in
layered linearly elastic materials. An extension of the work of Sawyers and Rivlin to
layered structures, with the determination of the onset of buckling analysed within the fully
nonlinear theory of finite elastic deformations, was given in Pence and Song (1991) for
the special case of a symmetric three-ply construction composed of two neo-Hookean
constituents. Even within this specialized context, it was shown that the buckling behavior
could depart significantly from that of the isolated layer. Here, as for the isolated layer, the
symmetry of the construction once again leads to buckling deformations that are either
flexural or barrelling in character. However certain constructions did not involve a sequen­
tial correlation of buckling load with the ripple number. An examination of the reordering
of these extended isolated layer buckled solutions, i.e. the natural continuation of the
solutions previously obtained by Sawyers and Rivlin (1974), was the primary subject of
Pence and Song (1991). As anticipated, if the various parameters characterizing the com­
posite construction tend to special values associated with isolated layer noncomposite
construction, then the results of Pence and Song (1991) reduce to those of Sawyers and
Rivlin (1974). However for values of these composite characterization parameters far away
from the special noncomposite values, the reordering of the buckling loads could be quite
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drastic, including constructions in which the m = 00 wrinkling instability had the lowest
buckling load, thereby rendering it the critical instability. Some consequences of these
results related to optimal design of symmetric three-ply plates against these buckling
instabilities were then addressed in Song and Pence (1992).

However left unaddressed in both Pence and Song (1991) and Song and Pence (1992)
is the possibility of completely new buckled deformations in the multi-layered construction,
by which we mean buckled deformations which have no counterpart in the noncomposite
case of the isolated layer. By definition, if such solutions exist for certain layered construc­
tions, they must cease to exist at those special values of the composite characterization
parameters associated with noncomposite construction.

In this paper, we investigate the possibility ofsuch new solutions, for rectangular plates
composed of alternating neo-Hookean layers. Attention is focussed on symmetric three-ply
constructions (the subject of Pence and Song, 1991), and on two-ply constructions. As
shown in the next section, a general N-ply construction leads to a bifurcation condition for
the onset of buckling that is found by requiring that the determinant of a 4N x 4N matrix
must vanish. This matrix condition stems from 4N boundary and interface conditions that
are not trivially satisfied for the plane strain buckled solution forms under consideration.
In Section 3, the symmetric three-ply construction is considered, in which case symmetry
reduces the general 12 x 12 matrix to two separate 6 x 6 matrices, one of which governs
flexure, and the other of which governs barrelling. For each of these two deformation types,
there is a continuation of the isolated layer solutions as previously found in Pence and Song
(1991), however, in addition we also uncover the existence of a completely new family of
solutions for both flexure and barrelling which have no isolated layer counterpart. The
buckling loads associated with these new solutions are found to be higher than those
associated with the previously known solution families. In particular, the new solutions
also have an associated wrinkling load which is shown to be higher than that of the wrinkling
load for the previously known solutions. In fact the analysis that is developed to obtain
these new families of solutions clarifies the dependence of both new and old wrinkling loads
on the composite characterization parameters that specify the three-ply construction.

Section 4 is devoted to the two-ply problem. Here lack of symmetry does not permit
any reduction in the general 8 x 8 system governing bifurcation, consequently buckling is
neither of pure flexure nor pure barrelling type. In this case we obtain three families of
buckled solutions. Two of these families are the extension of the isolated layer families to
the two-ply case, and as such these two families have a common wrinkling load. The third
family has no isolated layer counterpart, and its wrinkling load is higher than that of the
other two families. The results of Section 3 and 4 prompt us to conjecture that, in general,
there will be N + 1 families of buckled solutions for the N-ply construction. The mixed
mode (flexure/barrelling) nature of the buckling deformation in the two-ply case is examined
in Section 5. We propose a decomposition of the general mixed mode deformation into
four parts: smooth flexure, smooth barrelling, residual flexure and residual barrelling and
investigate how their associated percentages vary with the ripple number m. The residual
flexure and residual barrelling portions of the deformation are shown to correlate directly
with the discontinuity in various high order displacement derivatives across the ply interface.

2. GENERAL FORMULAnON FOR PLANE STRAIN BUCKLING

We consider an N-ply rectangular plate in which the plies are stacked along the X 2­

axis. Each ply is composed of one of two neo-Hookean materials, with shear moduli pOI

and Mill), respectively, which strictly alternate by ply. The plate occupies a region :JB in its
undeformed configuration, where (!J is given by

(I)

with R] +R 2 = 212, Perfect bonding is assumed across the ply interfaces. The deformation
field and the corresponding deformation gradient tensor are written as
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ox
X= X(X), F = oX' VXE!J6.

The incompressibility of the two neo-Hookean materials then gives the constraint

det F = 1.

The Piola-Kirchoff stress tensor is given by

s = - pF- I + ,u(j)F T
, j = lor II for material lor II,
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(2)

(3)

(4)

where p = p(X) is the associated hydrostatic pressure field; the equilibrium equations are

div ST = O. (5)

In the buckling problem considered here, frictionless normal thrusts act on the two surfaces
at XI = ±l, yielding

(6)

Here p is the overall imposed stretch in the XI direction; the compressive case of interest
corresponds to 0 < p < 1. The surfaces at X 2 = - R I, R 2 are taken to be traction free:

(7)

while the surfaces at X 3= ±13 are constrained to remain in their original planes by a
frictionless clamp:

(8)

Across each interface of the N-ply plate, both tractions and displacements are continuous
due to the assumption of perfect bonding:

SulXj =s2ilx" xlxj = xix" (i= 1,2,3) on interfaces, (9)

where X 2 = X~k), k = 1,2, ... , N - I are the ply interface locations.
The governing equations (5) with (4), the incompressibility constraint (3), the boundary

conditions (6)-(8) and the interface conditions (9) constitute a complete boundary value
problem, which, to within a rigid body translation in the X 2-direction, has exactly one pure
homogeneous solution as follows:

(10)

The associated principal stretches are Al = p, A2 = p- I, A3 = I and the deformation gradient
tensor has the form

F = diag(p, p-I, I).

In conjunction with (4) and (II), the traction boundary condition, (7h gives

p = ,uU)P- 2 == pU) , j = I, II.

Therefore

(II)

(12)
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[P-P; 0 0 ,]S = /llil ~ 0 0 == SU), 1= I, II. (13)

0 l-p

All other boundary conditions are automatically satisfied by the homogeneous deformation
(10).

Let T be the total (compressive) thrust applied onto each of the surfaces X j = ±II
and let AU) be the original area of the surface taken by material 1 (j = I or II) so that
A(l)+A(lI) = 4/7./3' It then follows from (13) that

(14)

Note that T is monotonically decreasing in p from T = r:fJ when p = 0 to T = - 00 when
p = 00, with T = 0 when p = I. Hence (14) can be inverted to give stretch as a function of
thrust: p = peT), with the compressive case 0 < p < I corresponding to T> O.

We now turn to examine the possibility of bifurcation away from any such state by
solutions which involve an additional incremental deformation u superposed onto this
homogeneous solution. Attention is restricted to buckling that takes place in the (X). X7.)­
plane in the following plane strain fashion:

where the unknown functions Uj and U2 are assumed to be independent of X3 and I; is an
order parameter which is used to obtain a linearized problem governing bifurcation from
the homogeneous solution. If the pressure field and the associated Piola-Kirchoff stress
tensor are given by

(16)

respectively, then substituting from (15) into (2)2 and (3) and retaining terms of order I;

gives

while substituting from (15) into (4) and (5) and retaining terms of order I; gives

div!i T = 0,

where

(17)

(18)

[

_p-Ip+//il(u,.,-:p-2UU)

!i = /l!J)(uu+p-·u7..d

o

/lU)(U2" +p-2UU )

- pp+ 2/lU)U2.2

o
(19)

Now (18)3 is satisfied if p(X" X 2, X 3) = p(X" X 2), thus giving that (17) and (18) 1.2 are
three linear, homogeneous partial differential equations for u,(X"X2), U2(X"X2) and
p(X" X 2). Turning now to examine the order I; boundary and interface conditions, one
verifies that those obtained from (8) are automatically satisfied by virtue of (ISh and (19).
Following Sawyers and Riv1in (1974), the following forms
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(20)

are consistent with both (i) seperation of variables in the system of partial differential
equations mentioned above, and (ii) the boundary conditions (6) provided that

mn {2,4, 6, 8 .
0=21;' m = 1,3,5,7 .

for the upper terms in (20),

for the lower terms in (20).
(21)

Under (20), the system of partial differential equations (17) and (18) 1,2 reduce to the single
fourth order ordinary differential equation for U 2(X2 ) :

(22)

where the prime denotes differentiation with respect to X 2 and we have introduced a new
stretch ratio

(23)

The remaining two functions U 1(X2) and P(X2) are then given by

(j)

P(X2) = pU)(X2) = A~202 {U~'(X2) - 0 2U;(X2)}, j = I, II. (24)

The general solution of (22) is given by

U2(X2) = L,(X2)cosh (OX2)+L2(X2) sinh (OX2)

+M 1(X2) cosh (AOX2)+M 2(X2) sinh (AOX2), (25)

where L j (X2) and M j (X2), i = 1,2, are constant in each ply. Thus L j (X2) and M j (X2) are
step functions

(26)

where k = 1, ... , N refer to the in general different values of these constants in each of the
N plies. There are thus 4N unknown constants to be determined, and it only remains to
satisfy the O(e) boundary and interface conditions generated by (7) and (9). The condition
on S23 in (7) is satisfied automatically, while the remaining conditions in (7) yield four
relations binding the 4N unknown constants. Similarly the continuity of S23 and X3 in (9)
is satisfied automatically, while the remaining conditions in (9) yield 4(N-1) relations
binding the 4N unknown constants. In total, this gives 4N relations, which are linear in the
unknown constants, and so may be written as
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SY21'

Fig. I. The symmetric three-ply composite plate considered by Pence and Song (1991) and
re-examined here for additional buckling solutions. Plane strain buckling takes place in the

(X,. X,)-plane.

(27)

where I is the vector containing the 4N unknowns in (26). The existence of nontrivial
solutions for this system of equations requires that

det J 4N x 4N = O. (28)

This is the basic bifurcation condition for the buckling problem of the N-ply neo-Hookean
plate under thrust.

3. ADDITIONAL FAMILIES OF BUCKLED SOLUTIONS FOR THE SYMMETRIC THREE-PLY
COMPOSITE PLATE

In this section we re-examine the bifurcation condition (28) for the symmetric three­
ply plate (N = 3) as studied by Pence and Song (\991). Here R\ = R 2 = 12 where plies 1,2
and 3 are, respectively, given by -/2 < X 2 < -R, -R < X 2 < R, R < X 2 < 12, If f.1.(I) is
the neo-Hookean shear modulus for ply-l and ply-3, and f.1.(II) is the neo-Hookean shear
modulus for ply-2 as illustrated in Fig. I, then (26) becomes

-/2 ~ X 2 ~-R

-R~X2~R

R ~ X 2 ~ 12

(29)

and the bifurcation condition (28) becomes det J 12 x 12 = O.
Now following Sawyers and Rivlin (\974), and Pence and Song (\991), attention is

restricted to the two subclasses of flexural buckling deformations and barrelling buckling
deformations, which exist as a consequence of the special symmetric nature of the three­
ply composite construction presently under consideration. A flexural deformation is one in
which UiX2) is an even function, whereupon (24) gives that U\(X2 ) and P(X2) are each
odd functions. This will be true provided that (LV), L~\), MVl, M~I» = (L\3), -£Ill, M<\3),
- ~3», ~2) = L~2) = O. Thus a linear system remains for 6 independent constants, which
are taken to be I = [LV), L~'), M\'), M~\), L\2l, M\2lJT. The associated 6 x 6 coefficient matrix
is given by
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AC I -ASI 2AC2 -2AS2 0 0

-2S) 2C I -AS2 AC2 0 0

JF =
-C3 S3 -C4 S4 C3 C4

S3 -C3 AS4 -AC4 -S3 -AS4

-AC3 AS3 -2AC4 2AS4 A{3C3 2A{3C4

2S3 -2C3 AS4 -AC4 -2{3S3 -A{3S4

1155

(30)

where

C 1 = cosh (11), C2 = cosh (Al1), C3 = cosh (l1a), C4 = cosh (Al1 OC) ,

SI = sinh (11), S2 = sinh ()-11), S3 = sinh (l1a), S4 = sinh (Al1a), (31)

A = A+ l/A,

and the parameters 11, {3 and a are defined in (35) below. The associated flexural buckling
equation is then written as

(32)

In contrast, a barrelling deformation is one in which U2(X2) is an odd function. In a
completely analogous fashion, the barrelling buckling equation is:

where J B is the 6 x 6 matrix:

'IIB(A, 11, {3, a) == det J B = 0, (33)

ACI

-2S 1

-C3

S3

-AC3

2S3

-AS)

2C t

S3

-C3

AS3

-2C3

2AC2

-AS2

-C4

AS4

-2A.C4

AS4

-2AS2

AC2

S4

-AC4

2AS4

-AC4

o
o

-S3

C3

-A{3S3

2{3C3

o
o

-S4

AC4

-2A{3S4

A{3C4

(34)

and the same notations (31) are used.The corresponding six constants for the barrelling
deformation are I = [L\I), L~I), M\I), M~I), L~2), M~2lf. The eqns (32) and (33) relate the
four dimensionless parameters:

(35)

which are described as follows: (I) the ripple parameter 11 scales the discrete ripple number
m with respect to the aspect ratio 12111> this parameter is often treated in the analysis as a
continuous variable; (2) the stiffness ratio {3 is the ratio of the shear modulus of material­
II to that of material-I; (3) the volume fraction a is the ratio of the thickness of the central
ply to the thickness of the whole composite plate; and (4) Ais the ratio ofprincipal stretches,
which in view of (14) and (23) is the load parameter with A = 1 corresponding to no load
and A monotonically increasing from A = 1 as the compressive thrust T increases. Their
respective ranges are
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I} > O. /3 > o. 0 ~ C( ~ I. )0 > O. (36)

A pair of material parameters (/3. :x). together with /1.12 and I, specifies a specific symmetric
three-ply construction. Each of the special values

/3 = I or r:t. = 0 or C( = 1 (37)

correspond to the special case of a noncomposite plate. conversely values of the pair (fl. rx)
obeying (36h, with /3 # 1 and :x # 0 and rx # 1 are associated with genuinely composite
constructions. The pair (/3. rx) constitute the composite characterization parameters men­
tioned previously in the Introduction. It is to be noted in all cases that the absence of load
po = 1) trivially furnishes a solution to both (32) and (33) in view of the coalescence of the
final two columns of J p and J B'

Pence and Song (1991) investigated solutions of both (32) and (33) by fixing (11./1. ct)

obeying (36) 1.2.3 and showing numerically that each of these equations then admits a
solution ), obeying), > I and hence corresponding to compression. These solutions. denoted
by A= <Dp(l}. /3. rx) for (32) and A= <DB(I}. /3. rx) for (33) were determined numerically by
means of a searching and bisection algorithm and in each case resulted in the minimum
value of A> 1 compatible with (32) or (33) for the given (I}. /3. a). For fixed (/3. a). each of
these ),-values were found to approach a common asymptotic value if = i.;c(fl. a) as 17-+

00; this value was then computed numerically by taking a large cut-off value of IJ. Lett
unaddressed in Pence and Song (1991) is the possibility of additional roots A greater than
those given by <DF(I}. /3. rx) and <DB(I}. /3. a). as well as the possibility that the asymptotic calues
A", associated with wrinkling can he computed by analytical means. This section deals with
the further investigation of these two issues. The first issue leads us to analyze (32) and (33)
for large )., and the second leads us to analyse (32) and (33) for large IJ.

When the matrix JF in (30) is compared with the matrix J B in (34), the only difference is
in the last two columns of each matrix. In fact, 'P f,(lL. I}. /3. a) may be transformed into
'PBO., I}. /3.et) by exchanging '1 and i.1} in the hyperbolic trigonometric functions of (31). i.e.

(38)

This claim may be verified by first subjecting (30) to the exchanges on the right hand side
of the ~ in (38). and then performing the following row operations: exchange column I
with column 4. exchange column 2 with column 3. exchange column 5 with column 6.
exchange row 1with row 2, exchange row 3 with row 4, exchange row 5 with row 6, multiply
rows 1, 4. and 5 by A. and finally. multiply columns 1. 2, and 5 by i. ~ !. Under this set of
operations 'P p is transformed into 'PB' Relations (38) will enable us to analyse many aspects
of the flexural and barrelling cases in a common setting. To this end it will be useful to
introduce the subscript * as a placeholder for either the subscript Ffor flexural deformation
or the subscript B for the barrelling deformation.

The expressions 'PF and 'PB given in (32) and (33) may be expanded into the following
sum of products of hyperbolic functions and polynomials:

(39)

where
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In equation (39), the only difference between the flexural and barrelling case are the values
for K, = K i(2, IX) (i = I, ... , to) in (40). These values, as well as the elements of the matrix
P, are given in Appendix A. It is to be noted that "*()" 0, IX) = 0, so that (39) gives
'¥*(2,0, {3, IX) O.

We now conduct an analysis of '¥*(A, fI, {3, IX), in (39), for large A in order to gain
insight as to the total number of roots Ato (32) and (33) for fixed (fI, {3, IX). For large A. the
leading order terms in (39) will be those containing both ),5 from (42) and e~(A+ I), e~U-I),

e~O+ 2,- I) and e~(A- 2,+ I) from (40) [viz. (A.5) and (A.6)]. It follows that, for the flexural
deformation,

(43)

provided that both {3 i= 1 and IX i= I ; and for the barrelling deformation,

(44)

provided that {3 i= I, IX i= I and IX i= O. Hence (43) and (44) give

where

O)F(fI, {3, IX) = ~ ({3 - ])2 cosh (11IX) sinh [11(1 IX)],

O)B(I}, {3, IX) = ~ ({3 - I) 2sinh (I}IX) sinh [I}(1- IX)],

(45)

(46)

(47)

for the flexural deformation and the barrelling deformation, respectively. For genuinely
composite constructions ({3 i= I, IX i= I, and IX i= 0) the expression 0).(11, {3, IX) e~AA. 5does not
vanish and as such is a convenient normalization for '¥.(A., I}, {3, IX). Let

(48)

so that, in a genuinely composite construction, the buckling equations (32) and (33) are
equivalent to

(49)

with * = Fand * = B, respectively, and ll.(A., 11, {3, IX) -+ ] as A. -+ 00. We have numerically
studied the functions ll*(A., 11, {3, IX) for fixed (11, {3, IX) in genuinely composite constructions
and found that both. = F and * = B will in general each yield two roots ), > I for (49)
before ll*(A., 11, {3, IX) begins to smoothly approach its asymptotic value of one. This is
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4

3

2

nB(;"'1.5,2,0.5)

--- --_._--------_...._--------------._---------------_.---~~-~!~-~~-~?}--

Fig. 2. The functions flp(A, '1, p, IX) and flB(A, '1, p, IX) defined in (48) for the case '1 = 1.5, fJ = 2.
IX = 0.5. Each of these functions has two roots Ain the range A> I, and each function approaches

the asymptotic value one as A---> CfJ.

demonstrated in Fig. 2 for the case (11, {3, IX) = (l.5, 2.0, 0.5) which exhibits the ever present
root A. = I and the smooth approach to the asymptotic value of I for both IlAA., 1.5,2.0, 0.5)
and IlB(A., 1.5,2.0, 0.5). For I < A. < 00, this figure indicates the presence of two roots A. to
the equation IlF(A., 1.5,2.0, 0.5) = 0, the first of which is given by A.F~ 3.67 and the second
of which is given by P' ~ 11.46. Similarly, the equation IlB(A., 1.5, 2.0,0.5) = 0 has two
roots A. given by A.B~ 5.45 and IB ~ 20.53. A similar situation prevails for all other values
(11, {3, IX) associated with genuinely composite construction, namely there exist roots )/ and
P for (49) whenever. = F, and there exist roots A.Band IB for (49) whenever. = B, with
these roots obeying

(50)

The functions taking (11, {3, IX) to these four roots will be denoted by <l>F(I], p, a), $F(I], p, a),
<l>B(11, {3, IX) and $B(I], {3, IX). The roots Yand A.Band the functions <l>F(I], {3, IX) and <l>B(I], p, IX)
were obtained previously in Pence and Song (1991). The study of Pence and Song (1991)
however did not uncover the additional roots IF and J:B owing to numerical instabilities
connected with seeking roots A. to (32) and (33) whenever ), is larger than the respective
first roots Yand A.B. The scaling (48) suggested by the large A. asymptotic analysis overcomes
this difficulty and thus enables us to uncover the new roots If' and lB. These two new roots
are each associated with a new family of buckled configurations for the symmetric three­
ply construction. The subsequent numerical approach ofIl. -> I as A. -> 00 strongly suggests
that all roots to (32) and (33) are now accounted for.

Numerical study of the four functions <l>F(11, {3, IX), $F(11, {3, IX), <l>B(I], p, er:) and
<l>B(11, {3, IX) indicates that each of these functions varies smoothly with (I], {3, IX) and obeys
the ordering relation

(51 )

Furthermore, for fixed (P, IX) corresponding to a genuinely composite construction, we find
as 11 -> a that

lim <l>F(11, {3, IX) = I,
~-o

lim <l>B(I], {3, oc) = lim $A11, {3, IX) = lim $B(I], P, IX) = 00.
11- 0 '1- 0 11.-j>0

(52)
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Moreover, as '1 -+ 00, we find that
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(53)

where Aoo(P, a) < Xoo(P, a). Equations (51)-(53) are in accordance with the results given in
Pence and Song (1991) for the functions $F('1, {3, a), $B('1, p, a) and Aoo(P, a), and extend
these results to encompass the new functions $F('1, P, a), $B('1, {3, a) and Xoo ({3, a) associated
with the new buckled configurations uncovered in the present extended study.

The functions $F('1, p, a), $F('1, {3, a), $B('1, {3, a) and $B('1, p, a) determine four
families of failure stretch ratios:

A~ = $F(mnlz/2IJ, p, a),

A~ = $B(mn1z/21], {3, a),

X~ = $F(mn1z/21], p, a),

~ = $B(mn1z/21], p, a), m = 1,2,3 ... (54)

owing to the discrete nature of'1 as given in (35) I' The corresponding four families of failure
thrusts: T~, T~, f'~, and f'~, m = 1,2,3 ... are then obtained from (14) upon using
P = A- 112. These failure thrusts are ordered the same as the failure stretch ratios. In
the event that $F('1, p, a) is monotonically increasing in '1 to Aoo(P, a) and $B(t/, {3, a) is
monotonically decreasing in '1 to Aoo ({3, a), then

0< Tf < Ti < .. , < T~ < T~+ I < ... < Too < ... < T~+ I < T~ < .. , < T~ < Tf,

(55)

where Too is a wrinkling thrust associated with the stretch ratio Aoo ({3, a). In particular, as
established by Sawyers and Rivlin (1974), this occurs for the noncomposite case (37); the
corresponding curves $F('1, P, a) and $B('1, /3, a) are displayed in Fig. 3. As shown in Pence
and Song (1991) certain pairs (P, a) are associated with a loss ofmonotonicity in $B('1, {3, a)

20,.,--.------.-------,...-----,.-------,.-------,---,-.......,.-.......,.----,

15

cI\(1'),p,a)

10

5

A... -------------:;---::;:,----------------1
~,P,a)

o'---"----"----"-------''------''--__'~__'_ __'_----'_ __l 1')
o 2 3 4 5 6 7 8 9 10

Fig. 3. The functions $F(1/, 13, IX) and $0(1/,13, IX) for parameter pairs (/3, IX) corresponding to the
noncomposite case as given in (37)
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Ci>F<11.0.5,O.5)

A,., - -..- :::::::':'::-..== =.. --------l

10

<l>F<11.0.5,O.5)

Fig. 4. The functions ¢JF(r/. p, ct). ¢JB(I/, p, !X), IPF(I/, p, !X) and IPB(I/, p, ct) for p = 0.5, !X 0.5. The
two lower curves were displayed previously in Fig. 4 of Pence and Song (1991). The two upper

curves correspond to the new families of buckled solutions.

as a function of ripple parameter '1. Figure 4 depicts one such example for the pair
(P, a:) = (0.5,0.5). Furthermore, certain pairs (P, a:) are also associated with a loss of
monotonicity in <l>F(I1, p, a:) as a function of 11. Figure 5 depicts one such example for the
pair (P, a:) = (2.0,0.5). In such cases the possibility arises that the failure thrusts T~, and
T~, will no longer obey (55), but instead will be interlaced. In all cases (51) ensures that
the lowest, or critical, thrust will be one of the T~ for some positive integer m including,
possibly, m = 00. If <l>F('1, P, a:) is monotonically increasing to ,{oo then this critical thrust
will be Tf, however if <l>F('1, P, a:) is not monotonic, then this critical thrust may occur for
m i= 1 and indeed may be associated with the wrinkling thrust T~ = Tx' A detailed study
of such phenomena as they occur among the two families T~, and T~. (m = I, 2, ... ), with
particular emphasis on their correlation to parameter pairs (p. a) and aspect ratio 12/1 1 is
given in Pence and Song (1991).

We thus turn our attention to the two new families of failure thrusts t~ and t~

(m = 1,2, ...). Consider first the case in which both ~F('1, P, a) and ~B(I1, p, a) are mon­
otonically decreasing toward the asymptote Xoo(P, a) as for example occurs in Fig. 4. Then
tf is the maximum thrust from among these two families, and rx is the minimum thrust,

15

10

5

oL--_~---,,,------,----,---,,----"---'----'---'----' 11
o 2 J 4 5 6 7 8 9 10

Fig. 5. The functions l1lp (I/. p. !X), l1lB(I/, P. !X), IPF(I/, p,!X) and IPB(I/, p,!X) for fJ = 2. !X = 0.5. The two
lower curves were displayed previously in Fig. 5 of Pence and Song (1991), while the two upper

curves correspond to the new families of buckled solutions.
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where f 00 is the newly uncovered wrinkling thrust associated with Xoc;. The remaining thrusts
will lie between these values, and the two families of thrusts will interlace their values.
However for fixed ripple number m, (51) ensures that f'~ < f'~. The question arises as to
whether or not the thrusts from these two new families can interlace themselves with the
thrusts from the two original families. For the case depicted in Fig. 4, no interlacing can
occur with the original flexure family, since the interval AN < A< Xoo isolates the range of
the curve <1>F('7, {J, IX) from the range of the curves $F('7, {J, IX) and $8('7, {J, IX). However no
such isolation occurs between the latter two ranges and that of <1>8('7, {J, IX) since
<1>8('7, {J, IX) -+ 00 as '7-+ O. Thus if the separation between the discrete '7 values is sufficiently
small, some of the low ripple number thrusts of the original barrelling family will be
interlaced with some of the higher ripple number thrusts of the two new families. The
separation between discrete '7 values is determined by the aspect ratio 12/11> thus for fixed
plate height 12, this interlacing will occur if the plate length in the direction of thrust II is
sufficiently large.

Symmetric three-ply plates corresponding to other pairs ({J, IX) give rise to fairly similar
phenomena, with the departure from the behavior described above determined by the extent
to which the functions $F('7, {J, IX) and $8('7, {J, IX) are not monotonic in '7. For example in
the case ({J, IX) = (2.0, 0.5) depicted in Fig. 5, the curve $F('7, {J, IX) exhibits a local minimum.
Thus in this case TN is not the minimum failure thrust from among the two new families.
Instead this minimum failure thrust will occur at some finite ripple number m within the
new flexure thrust family f'~.

The ordering possibilities for the new thrusts f'~ and f'~ could certainly be char­
acterized in a systematic fashion by utilizing a methodology similar to that developed in
Pence and Song (1991) for the previously known thrusts T~ and T~. However, since (51)
ensures in all cases that the critical failure thrust remains associated with the original flexure
family T~, such a detailed study will not be pursued. In addition, we note that the con­
clusions of the optimal design study given in Song and Pence (1992) are not affected by the
existence of the two new families f'~ and f'~ of buckling thrusts.

We now turn to an asymptotic analysis of the curves <1>A'7, {J, IX), $F('7, {J, IX), <1>8('7, {J, IX)
and $8('7, {J, IX) as '7 -+ 00. This will yield an analytical characterization of the asymptotic
values Ax ({J, IX) and Xx ({J, IX) associated with wrinkling, and will also clarify the apparent
disappearance of the two new families of buckled solutions for the noncomposite case given
by (37). Now (40) and (41), with (A5) and (A6), give

for both flexural and barrelling deformations. Hence

'II*(A, '7, {J, IX) '" e~KlP I (A, {J), as '7 -+ 00,

where

5

PI(A,{J)== L PI,} (fJ)A),
}= -4

(56)

(57)

(58)

and the polynomials P I,}({J) are given in Table AI. Since the exponential function is always
positive, (57) indicates that solutions of

(59)

yield asymptotic solutions to the buckling equations 'II* = 0 as '7-+ 00. In particular, the
wrinkling load parameters Aoo({J, IX) and Xoo({J, IX) must be roots of (59). We observe that,
according to (59), these wrinkling load parameters are independent of the volume fraction
IX. Evaluating (58) with the aid of Table A.I gives
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where

(60)

1,0.) = (,{3-3A 2-).-I), (61)

12(A, P) = (fJ - 1)21,.3 - [3(fJ - 1)2 +4fJ]A2- [(fJ - I) 2+ 8fJ]).- (fJ + 1)2. (62)

The equation II (A) = 0 has one real root Ax given by Cardano's solution for the cubic
polynomial equation,

Ax = 1+ 3j2+j4_(4/3)3 + 3)2-j4-(4/3)3 = 3.38297577.... (63)

For P-# I and fJ ~ 0, the equation 12(A, fJ) = 0 also yields exactly one real positive root,
Xx, (P)· In fact, we find that the constant Aoo given in (63) is the asymptotic value AcYC ({3, a)
of (53) \0 and we also find that the root loo ({3) to 12(A, {3) = 0 is the asymptotic value A.c({3, a)
given in (53h Hence (53) can be improved to yield

In particular, (64) I is a significant improvement over the numerical cut-off procedure used
for computing the wrinkling load parameter Aoo for the examples presented in Pence and
Song (1991). Specifically, it is to be noted that some of the examples presented in Pence
and Song (1991) were more successful than others in accurately attaining this constant
asymptotic value ).00 ~ 3.383.

The dependence of loo on fJ is depicted in Fig. 6, where it is to be noted that

(65)

Here (65) I and (65) 3 follow from (62) since 12(A, 0) = I, (A) and IiI,., fJ) = fJ 2/1(A) + O(fJ)
as {3 ..... 00, whereas (65)2 is a consequence of the observation that/2(J,., I) = - 4(1,.+ 1)2 has
no roots for positive A. Since fJ = 1 corresponds to the case of noncomposite construction,
(65)2 leads one to anticipate that the two new families offailure thrusts f~ and f~. which

50

40

30

o0l.----O----'-2---'-3---'-4--5'------'6~---'-7---'-8---'-9--'10 ~

Fig. 6. The values of the wrinkling load parameters A", and X",(P) which are the roots of (61) and
(62) respectively. Here Aoo = 3.38297 ... and X",(fJ) depends only on p. As p-> I, corresponding to

a noncomposite plate. XL (P) -> OCJ.
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I.
Fig. 7. The two-ply composite plate. Once again plane strain buckling is assumed to occur in the

(X" X2)-plane.
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only exist for the genuinely composite construction, will individually retreat to infinity if
the (f3, ex) parameter pair is made to approach any of the values (37) associated with
noncomposite construction.

4. FAMILIES OF BUCKLED SOLUTIONS FOR THE TWO-PLY PLATE

It was shown in Pence and Song (1991) that the failure thrusts given in Sawyers and
Rivlin (1974) for noncomposite construction, will reorder themselves for certain composite
constructions. The results of the previous section indicate that, in addition, composite
construction will also give rise to completely new families of failure thrusts. Specifically,
the symmetric three-ply construction gives rise to two new families of failure thrusts as
given by (54) 3 and (54)4' The question thus arises as to how such new families will correlate
with the total number of plies N in a more general construction. We here consider this
question for the case of a two-ply construction as shown in Fig. 7. By setting the origin of
the coordinate system at the interface between the two plies, then ply-I occupies
- R 1 ::::; X 2 ::::; 0 and ply-2 occupies 0::::; X 2 ::::; R 2• Theiack of symmetry in this problem does
not allow the type of simplifications as given in Section 3 in which the 12 x 12 system for
the symmetric three-ply problem reduced to two separate 6 x 6 systems [(32) and (33)] for
flexural and barrelling bifurcations. Instead, for the two-ply problem, one must treat the
full 8 x 8 system [(28) with N = 2] and the resulting buckled states will neither have the
symmetry associated with flexure nor that associated with barrelling. One finds that if the
eight constants in (26) are arranged as follows

1= {L(I) L(l) M(l) M(l) L(2) L(2) M(2) M(2)Y
1, 2, t, 2, I, 2, I, 2 ,

then the coefficient matrix J of (27) is given by

AC3 -AS3 22C4 -22S4 0 0 0 0

-2S3 2C3 -AS4 AC4 0 0 0 0

I 0 I 0 -1 0 -1 0

J=
0 1 0 2 0 -1 0 -2

-A 0 -22 0 f3A 0 2f32 0

0 -2 0 -A 0 2f3 0 f3A

0 0 0 0 ACs ASs 22C6 22S6

0 0 0 0 2Ss 2Cs AS6 AC6

where C3, C4, S3' S4 and A are again given by (31) and

(66)

(67)
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C5 = cosh (1](1-oc», C6 = cosh (AI](l-a»,

S5 = sinh (1](1 - iX», S6 = sinh (}.I]( I - a». (68)

Thus, once again, four nondimensional parameters 1], fl, iX and A enter into J. Here the
stiffness ratio [3 and the load parameter A are again given by (35h and (35)4' however the
ripple parameter 'f/ and the volume fraction iX are now no longer given by (35) I and (32h
but are instead given by

(69)

Even so, the parameter ranges (36) remain in force. It is to be noted that interchanging the
ply ordering results in (iX, (3) being transformed into (I-iX, 1/(3). Once again, if the material
parameters (iX, (3) take the values in (37), then the two-ply problem considered here reduces
to the noncomposite construction as studied by Sawyers and Rivlin (1974, 1982). Tn
addition, as before, genuinely composite constructions obey [3 '# I, a '# 0 and a '# I,

The necessary and sufficient condition for bifurcation to take place in the two-ply
construction shall be written as

\{I(A, 1], [3, iX) :::::: det J = O. (70)

The analysis of (70) bears many similarities to the analysis of either (32) or (33). It is to be
noted, however, that the size difference of the coefficient matrix J (64 entries) as compared
to either JF or I n (36 entries each) serves to complicate the ensuring analysis. In view of
the fairly detailed exposition given in the previous section, we shaH here summarize the
results of the analysis of (70) and refer the reader to Qiu (1992) for additional details. Once
again the no-load case A= I always furnishes a solution to (70) as then the first and third
column of J are identical. A large Aexpansion of J can be shown to yield

for genuinely composite constructions where

OJ(I], [3, iX) = !(1- (3) 2sinh (I]IX) sinh [1]( I - iX)] '# O.

(71 )

(72)

which we note in fact coincides with the functional form given in (47). Thus we normalize
the bifurcation equation (70) so as to give

\{I(A, 1], [3, IX)
n()., 1], [3. iX) = ( [3 ) ~A d = O.

OJ 1]. ,iX e II.

(73)

For fixed (I], [3, iX) corresponding to genuinely composite constructions, numerical evalu­
ation of (73) reveals the existence of three roots A obeying A> I and also confirm that
n(A, 1], [3, IX) -> I as A-> 00 (Fig. 8) so as to provide confidence that all possible roots are
accounted for. These three roots shall be denoted by

(74)

and the functions taking (1], [3, iX) to these roots shall be given by $i(l], [3, IX), $ii(l], [3, ct) and
$iii(l]. [3, ct). Numerical procedures for constructing these functions have been developed
and curves of load parameter A vs ripple parameter I] for various values of ([3, iX) are given
in Figs 9-13. Each of the three curves in each figure gives rise to a family of failure load
parameters Aowing to the discrete nature of the ripple parameter I] as given in (69) I' These
shall be denoted by
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0.5

Asymptotes to 1

Mj

-1
0

~l ~"
II. 11."10 30 40 50 60 70

A.
80

Fig. 8. The two·ply function n(2. 1/. p, a) for the case 1/ "" 2. P= 2, a = 0.25. There are three roots,
besides 2 = I, in the two'ply case.
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Fig. 9. The functions <Il,('1, p, a), <Il,,('1, p, a) and <Il",('1, p, a) for the case p = 2, a = 0.3.
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Fig. 10. The functions <Il;(I/. p, a), <Il,,(t/, p, a) and <Il;;;(I/, p, a) for the case p = 3, a = 0.3.
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Fig. 11. The functions 11>,(1/, (3, IX), 11>,,(1/, (3. IX) and 11>;;;(1/, (3, IX) for the case (3 = 3, IX = 0.5.

14

~ .....
12

10

8

6

4I..." .................•......::;...""'...=----------:------1

2

OL-_~_>--_'--_'--_'--_l.----''----'l.------J'----' 11
o 2 3 4 5 6 7 8 9 10

Fig. 12. The functions 11>,(1/, (3, IX), 11>;,(1/, (3, IX) and 11>;;;(1/, (3, ex) for the case (3 = 2, ex = 0.1.
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Fig. 13. The functions 11>,(1/, (3, ex), 11>,,(1/, p, ex) and 11>,,,(1/, (3, ex) for the case (3 = 4, IX = 0.9.
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A~ = $i(mnI2/1), {3, IX),

A~ = $ii (mn/2/III {3, IX),

A~ = $iij(mn/2//J, {3, IX), m = 1,2,3 ....

1167

(75)

The corresponding families of failure thrusts {T~, T~, T~:} with m = 1,2, 3, ... are found
from (75) using (14) and p = A-1/2. It is found as Yf -> 0 that the three curves $i(1], {3, IX),
$ii(Yf, {3, IX) and $iii(Yf, {3, IX) obey

As Yf -> 00 it is found that both $i(Yf, {3, IX) and $ii(1], {3, IX) approach a common asymptote
whereas $iij(1], {3, IX) tends to a different and larger asymptote. The value of these asymptotes
can be obtained by a large Yf analysis of (70) similar to that conducted in Section 3 [viz.
eqns (56)-(65)]. To this end it is found that

(77)

where fl(A) and f2()" {3) are again given by (61) and (62). Thus

(78)

where Aoo and Xc;) = Xc;)({3) are again as depicted in Fig. 6. Of the functions $i(l], P, IX),
$ii(l], {3, IX), $iii(1], {3, IX) it follows from a comparison of (76) with (52), (78) with (53),
and Figs 9-13 with Figs 4-5 that: $i(1], P, IX) resembles $AYf, P, IX), $ii(Yf, {3, IX) resembles
$B(I], {3, IX), and $iii(l], {3, IX) resembles both <DF(I], {3, IX) and <DB(I], P, IX). Indeed, as either
IX -> 0, IX -> 1or {3 -> 1the functions $i(l], {3, IX) and $ii(1], {3, IX) approach the, respective, lower
(flexure) and upper (barrelling) noncomposite curves as given in Fig. 3. Furthermore, since
the noncomposite case involves no additional families of buckled solutions, the family of
load parameters obtained from $iii(l], {3, IX) will evidently no longer exist if either IX = 0,
IX = 1 or {3 = 1. If {3 -> 1 then the asymptote Xc;)({3) drags the values $iii(Yf, P, IX) to 00
(compare Figs 10 and 9 which contrast {3 = 3 with P= 2). However if IX -> 0 or IX -> 1 with
P-# 1 then Xoo ({3) is finite so that presumably the values $iij(Yf, P, IX) tend to 00 nonuniformly
in I] (as seen from comparing Figs 9 and 12 for the case IX -> 0).

The detailed properties of the curves $;(1], {3, IX), $;;(1], {3, IX) and $iii(l1, {3, IX) determine
the ordering of the failure thrusts T~, T~ and T~ (m = 1,2,3, ...). As in the case of the
symmetric three-ply plate, the simplest orderings occur for those parameter pairs (P, IX)
for which <1\(1], {3, IX) is monotonically increasing in Yf with $i;(I], {3, IX) and $iii(1], {3, IX)
monotonically decreasing in 1]. A detailed study of the monotonicity properties of these
functions is not in the scope of the present study. However we do observe from comparing
Figs 9--13 for the two-ply construction to Figs 4 and 5 for the symmetric three-ply con­
struction that the two-ply curves appear to be "more monotonic" than the symmetric three­
ply curves. However, as shown by Figs 12 and 13, even certain of the two-ply curves may
also lose monotonicity. Figures 9-13 also suggest the intriguing result that

(79)

We note from Figs 4 and 5 that such curve separation by asymptotes is not a feature of the
symmetric three-ply problem. To inquire further into the validity of (79) we note from
(76)z, (78)z and ;"00 < XX)({3) that
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(80)

must have at least one root 11. By numerically evaluating \}I(},,,, , 11, {3, ct) with varying 11 and
fixed pairs of ({3, ct), we find no exceptions to the inequality

\}I(}'a:, 1], {3, ct) > o. (81)

Furthermore by numerically evaluating \}I(X", , 11, p, ct) with varying 1] and fixed pairs of
(P, a) we systematically find that there is only one value of 11 = 1]) such that

So 11) = '1J.(P, a) satisfying

\}I(Xx ({3), 1], {3, a) > 0, if 11 < 1]i ;

\}I(Xy.({3), 11, {3, a) < 0, if 11 > 11;· (82)

(83)

is, in all cases that we have examined, the unique root of eqn (80). This, in conjunction
with (76)z, (78b (81) and Ay' < XAP), suggests the generality of (79).

The results of this section provide a fairly complete description of the families ofplane­
strain buckled solutions for the two-ply neo-Hookean laminate construction. A similar
description for the (symmetric) three-ply neo-Hookean laminate construction was provided
by the results of the previous section. It is tempting to speculate on the possibilities for
the families of plane-strain buckled solutions for general N-ply constructions involving
alternating plies of two different neo-Hookean materials. We here note that the following
conjecture is consistent with all of our results: for a composite laminate construction
consisting of N alternating plies of two different neo-Hookean materials with shear moduli
p.(l) and p.(ll), we conjecture that there will exist N + I families of plane-strain buckled
solutions. Two of these families should involve load parameters Athat asymptote to A'Xj as
given by (63) and these families should be the extension to the composite case of the
solutions obtained by Sawyers and Rivlin (1974). The other N - I families should only exist
for genuinely composite constructions and all of them should involve load parameters ).
that asymptote to Xoo ({3) as given by the root of (62) with P = p.(ll)/p.(l). Here we note from
(62) that a necessary consistency relation for this conjecture, Xx ({3) = X:o(P- 1

), is satisfied.

5. CHARACTERIZATION OF THE DEFORMATION MODES FOR THE TWO-PLY PLATE

In both the noncomposite construction and the symmetric three-ply construction, the
construction symmetry with respect to X 2 gives rise to buckled configurations that cor­
respond to either flexure (U2( -X2) = U 2(X2)) or barrelling (U2( X 2) = - U2(X2)). How­
ever for the two-ply construction, genuinely composite constructions ({3 =I I, (X =I 0 and
(X =I I) no longer involve construction symmetry with respect to X 2' Thus, one would
anticipate that the associated buckling configurations should exhibit a mixed-mode flexure
and barrelling character. It is the purpose of this section to further examine this issue. In
the two-ply construction, U 2(X2) is written as:

uV)(X2) = £It cosh (OX2)+VP sinh (OX2 ) +M\j) cosh (AQX2)+Myl sinh (IDX2),

(84)

where j = 1,2 for ply-lor ply-2, and 1given by (66), can be normalized so that

(85)

Thus the full (linearized) deformation can then be obtained from (15), (20h3 and (24) ,.
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Fig. 14. Deformation of the two-ply composite plate under thrust for [llll = 1.2, e = 0.1, m = 2 (so
that Y/ = mnlJI, = 5.236), fJ = 3, r.t = 0.5. Here the m = 2 buckled configuration is from the first
family of buckled solutions so that A= A'z = $,(5.236,3,0.5) = 3.199 (see Fig. II), and

T= T2 = 5.163(1-I(!}A(Il+ p(l!}A!!T).

As an example, we display in Figs 14-16 all three of the deformations for ripple number
m = 2 associated with the construction {3 = 3, IX = 0.5 and 11112 1.2. The corresponding
families of solutions to the bifurcation equation (73) were shown previously in Fig. 11. In
these deformation figures, the value of the order parameter e [refer to (15)] is chosen so as
to make the deformed configurations distinguishable.

In order to examine the mixed-mode character of the deformation, we decompose the
vector I as follows:

1= a+b+c+d, (86)

a = raj, 0, a3, 0, as, 0, a7, oy, b = {O, b2, 0, b4, 0, b6, 0, bsY,

c = {O, C2, 0, C4, 0, C6, 0, csy, d = {db 0, d3 , 0, ds, 0, d7 , oy, (87)

where
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Fig. 15. Deformation of the two-ply composite plate under thrust for 1,Ilz = 1.2, e = 0.05, m = 2
(so that I'f mn1211, = 5.236), fJ = 3, r.t = 0.5. Here the m = 2 buckled configuration is from
the second family of buckled solutions so that A= A.'~ = 41,,(5.236,3,0.5) = 3.457, and

T = T2 = 5.890(1-1(1)A(I) +p{lI)A(II,).
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Fig. 16. Deformation of the two-ply composite plate under thrust for 1,/1, = 1.2, E = 0.3, m = 2
(so that,., = mnl,/I, = 5.236), fJ = 3. IX = 0.5. Here the m = 2 buckled configuration is from the
third family of buckled solutions so that Ie = J.'" = <1>",(5.236,3.0.5) = 7.345, and

T= T~' = 19.537(fl(l)A,"+ fl ,IIJA(l").

(88)

This decomposition, in the sense of the Euclidean norm used previously in (85), satisfies

lilf = Ilaf+ Ijbf+ Ilcr+ Ildll.:'. (89)

By this decomposition, the function Ul = Ul (Xl ) is expressed as

(90)

where

(91 )

(92)

-R) ~ X 2 ~ 0,

o~ X 2 ~ R l ,
(93)

U~(X2) = { d) cosh (nX l )+d3 cosh (AnX l ),

-d) cosh (nX2)-d3 cosh (AnX l ),

-Rl~Xl~O,

o~ Xl ~ R 2 •
(94)

Note that the four functions in the decomposition have the fol1owing symmetry properties:
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U'2(X2) = U2( - X 2),

U~(X2) = - U~( -X2),

U2(X2) = U2( - X 2),

U~(X2) = - U~( -X2). (95)

We shall say that if b = 0 and d = 0, then the whole deformation is one of pure flexure;
similarly, if a = 0 and e = 0, then the whole deformation is one ofpure barrelling. The four
decomposed deformation portions associated with this decomposition for the example
presented in Fig. 14 are displayed in Fig. 17. Since the deformation presented in Fig. 14
was associated with the first buckled family of solutions, i.e. the associated load parameter
A = Ai = <l>j(5.236, 3.0, 0.5) = 3.199, one might anticipate that flexure would dominate in
the decomposition. Indeed one finds in this case that II a 11 2+ II e 11 2 = 0.7049 and
Ilb11 2+ IIdl1 2 = 0.2951. Similarly, Fig. 18 gives the four decomposed deformations for the
example presented in Fig. 15. Since this deformation is associated with the second buckled
family of solutions one might anticipate that barrelling would predominate. Indeed for this
example one finds that Ila11 2 + lief = 0.3859 and Ilb11 2 + IIdl1 2 = 0.6141.

2...-----.------,,-----r------.---.,.-----,
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Homogeneous
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/

0.5

0

-0.5

-1

-1.5

-2.
-1.5 -1

Buckled
Portion

o 0.5

Original
Configuration

1.5

Fig. 17a. The smooth flexural deformation portion at 8 = 0.0001, m = 2,,, = 5.236, P= 3.0, IX = 0.5,
A= 41;(5.236, 3.0,0.5) = 3.199. Here IIal1 2 = 0.5317. The overall deformation was shown previously

in Fig. 14.

2...-----,.----,-----r-----,---.,.-----,
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Fig. 17b. The smooth barrelling deformation portion at 8 = 0.0001, m = 2, " = 5.236, P= 3.0,
IX = 0.5, A= 41;(5.236, 3.0, 0.5) = 3.199. Here IIbl1 2 = 0.1 166. The overall deformation was shown

previously in Fig. 14.
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Fig. 17c. The residual flexural deformation portion at e = 0.0001, m = 2,,, = 5.236, {3 = 3.0, IX = 0.5,
A= «1>;(5.236, 3.0, 0.5) = 3.199. Here lie II' = 0.1732. The overall deformation was shown previously

in Fig. 14.
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Fig. 17d. The residual barrelling deformation portion at e = 0.000 I, m = 2, " = 5.236, {3 = 3.0,
IX = 0.5, A= «1>,(5.236, 3.0, 0.5) = 3.199. Here lid II , = 0.1785. The overall deformation was shown

previously in Fig. 14.

The four decomposed deformation portions can, as we now show, be used to charac­
terize the interfacial deformation smoothness discontinuity at the ply interface X 2 = O. For
this purpose it is convenient to introduce the notation [[ ]] I0 to indicate the jump in value
across this interface. Clearly.Jrom (91), (92) it follows that

(96)

for n = 0, 1,2,3, .... Here (n) denotes a derivative of order n with (0) indicating the
undifferentiated function. Similarly (91) and (92) also directly give that

(97)

for n = 0, 1,2,3, ... , where the derivatives appearing in (97) are standard one-sided deriva­
tives. To address the possible discontinuity in the (one-sided) derivatives (U'2)(2n+ I) and
(U1)(2n) at the interface X 2 = 0, we note that the interface conditions (9) with (19) give the
following conditions, respectively, on U2(X2) and U;(X2):
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[[U2]]lo = 0, [[U;llIo = 0, (98)

which along with (96), (97) give

(99)

However (U~)(2n+l), (U~)(2n) for n = 1,2,3, ... are not continuous across the interface
X 2 = O.

Thus by using the boundary and interface conditions, we conclude, for
- R I ~ X 2 ~ R2, that U'2 and U~ and their derivatives of any order are continuous;
(U~)(°l, (U~)(l) and (U~)(2n) are continuous, and (U~)(o), (U~)(l) and (U~)(2n+ I) are
continuous. Furthermore one obtains from (90)-(94) that

1.50.5o-0.5-1

'~f-~'
Homogeneous
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I
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Buckled 'Original
Po~on Configuration

~"--'------"'-----"""-;:.:.:::'
-2
-1.5

-1.5

2

-0.5

o

0.5

1.5

Fig. 18a. The smooth flexural deformation portion at e = 0.0002, m = 2, ,,= 5.236, f1 = 3.0,
IX = 0.5, A. = <11,,(5.236, 3.0,0.5) = 3.457. Here 11811 2 = 0.0357. The overalI deformation was shown

previously in Fig. 15.
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Fig. 18b. The smooth barrelling deformation portion at e = 0.0002, m = 2, " = 5.236, f1 = 3.0,
IX = 0.5, A. =11I,;(5.236, 3.0,0.5) = 3.457. Here IIbl1 2 = 0.5835. The overalI deformation was shown

previously in Fig. 15.
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Fig. 18c. The residual flexural deformation portion at 8 = 0.0002, m = 2,1/ = 5.236, f3 = 3.0, a = 0.5,
I, = <1>,,(5.236, 3.0. 0.5) = 3.457. Here Ilell' = 0.3502. The overall deformation was shown previously

in Fig. 15.
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Fig. 18d. The residual barrelling deformation portion at £ = 0.0002, m = 2, 1/ = 5.236, f3 = 3.0,
a = 0.5, A = <1>,,(5.236, 3.0,0.5) = 3.457. Here Ildll' = 0.0306. The overall deformation was shown

previously in Fig. IS.

where 11 = I, 2, 3, ' .. , and a superscript number n inside parentheses indicates the nth
derivative, and a superscript number n without parentheses indicates exponentiation to the
power of n, In view of the preceding discussion, we shall refer to U'2(X2) as the smooth
flexure part of the decomposition, U~(X2) as the smooth barrelling part, U2(X2) as the
residualflexure part, and U~(X2) as the residual barrelling part.

!\,'rnrel;"" t('l (Q6L (94) and (99L we have

With eqn (102), by using the interface continuity condition (98), we find that

(102)

and (103)

where
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0.8

0.6
Smooth flexure

0.4

0.2

Residual flexure

Smooth barrelling

Fig. 19. The four deformation percentages as they vary with '/ for the case of P= 3, C( = 0.5,
associated with the first root;'; = <11,(,/, 3.0, 0.5) of the buckling equation (73). The vertical line at

'/ = 5.236 provides correlation with Fig. 17.

On account of (88), (95), (102)-(104), we conclude that if the deformation is one of pure
flexure, then C2 = C4 = C6 = Cg = 0 so that it is in fact smooth flexure. Similarly, if the
deformation is one of pure barrelling, then it is in fact smooth barrelling.

Under the normalization (85), the values Ila11 2
, Ilb11 2

, IIcl1 2 and IIdl1 2 correspond to
the percentage of smooth flexure, smooth barrelling, residual flexure and residual barrelling
within the overall buckled deformation. We find, for a given two-ply construction char­
acterized by a particular (P, oc), that these four deformation type percentages vary with
ripple parameter ". Figure 19 displays these changing percentages for the first buckled
family of solutions for the case p= 3, oc ~ 0.5. Similarly Fig. 20 gives these changing
percentages for the second buckled family of solutions, here however we only depict values
of" ~ 1 in view of numerical difficulties associated with the large values of A. for this family
near" = 0 [see (76h]. These numerical difficulties also prevented us from calculating these
percentages for the third buckled family of solutions. As anticipated, smooth flexure is
dominant for the first buckling family, depicted in Fig. 19. We note, however, that this

r----
J Smooth barrelling

I
! Residual flexure

I
Smooth flexure

/ Residual barrelling

I J

%1

0.8

0.6

0.4

0.2

o
1 2 3 4 5 6 7 8 9

11
10

Fig. 20. The four deformation percentages as they vary with '/ for the case of P= 3, C( = 0.5,
associated with the second root ;.;; = <11,;(,/, 3.0, 0.5) of the buckling equation (73). The vertical line

at'/ = 5.236 provides correlation with Fig. 18.
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dominance lessens as the ripple parameter 11 increases, resulting in a percentage growth of
both the smooth barrelling percentage and the residual deformation types. Similarly, as one
would anticipate, the smooth barrelling percentage dominates the second buckling family,
depicted in Fig. 20, with a percentage growth in the other deformation percentages for
increasing 11.
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APPENDIX A: THE EXPRESSION '¥ .(A, 11, p, IX) FOR THE SYMMETRIC THREE-PLY PLATE

Both the flexural and barrelling determinant, '¥.(A, 11, p, IX), for the symmetric three-ply plate as given in (32)
and (33) can be expressed as

where

". = ".(A, 11, IX) Ix 10 = {sinh (11K I)' sinh (11K,), ... , sinh (11 K10)}'

(A.I)

(A.2)

(A.3)

(A.4)

The K; = K,(A, IX) (i = I, 2, ... , 10) in (A.2) have different values for the flexure and barrelling cases, but by using
the exchange rule (38), one can convert between these two cases. The K,S for the flexural deformation are given
by:

K] = A+ I, K, = i.-I,

K, = i.+21X-1, K 4 = A-21X+ I,

K, = 2IXA-A+ I, K6 = 2IXA-A-I,

K 7 = 2IXi.+21X-i.-1 = (A+ 1)(21X-I),

K, = 2IXA-21X-ic+ I = (A-I)(21X-1),

K 9 = AIX+IX = (A. + I)IX, KIO = AIX-IX = (A-I)IX, (A.S)

and after exchanging I ..... A, and IX ..... IXA in the expanded forms of (A.S), one obtains for the barrelling deformation
that

K] = A+ I, K, = -(A-I),

K, = 2IXi.-A+ I, K 4 = -(2IXA-A-I),

K, = A+21X-I, K6 = -(A-21X+I),

K7 = 2IX+2IXA-I-A = (A+ 1)(21X-I),

K, = 21X-2IXA-I +A = -(A-I)(2(1(-I),

K9 = (A+I)IX, KIO = -(A-I)(I(. (A.6)
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Table A. I. The elements of the matrix P of (41) for the symmetric three-ply plate

" .
i~ -4 -3 -2 -I 0 2 3 4 5

I • • -4P•. _3 • • • -36PI._3 • • P.,-3
2 p •. 4 -P,,-3 -4P.,_3 -p.,-, P.,D -Pl.. -36P,,_3 -P1,3 P'.4 -P,.-3
3 • -P'.-3 4P3,_4 4P3,_4 • • -2P3,D -12P3,_4 • -P'.-3
4 P3.- 4 PI.-3 4P3.-4 -4P3._ 4 P3.D -P3., -2P3,D 12P3._ 4 PJ.4 p,.-J
5 PJ.- 4 -PI.-3 4PJ._ 4 4P3,_4 P3,D P3" -2P3.D -12PJ.- 4 P3,4 -PI.-3
6 PJ.-4 PI.-3 4PJ,_4 -4P3._ 4 PJ.D -P3" -2P3,D 12PJ,-4 PJ.4 P',-3
7 -p.,-J P.,-3 -4P,._3 12P.,_3 -14PI._3 22P J,_3 -36P,,_3 28P,,_3 -9P.,_3 P.,-3
8 -P,.-3 -P'.-3 -4P.,_3 -12P,._J -14P,,_3 -22P.,_J -36P.,_3 -28P.,_3 -9P•. - 3 -p•. - J
9 0 0 • • • -64P,._3 • • • 0

10 0 0 P9.- 2 -P9,-1 P9.D 64P •. _J P9,2 -P9,J p •.4 0

Each element of the lOx 10 matrix P is a multiple of one of 17 distinctive polynomials which are denoted by • in
Table A, I, Here, and in what follows, the column index j of the matrix entry p,.} is offset by - 5 for consistency
with the exponents of Agiven in (A.4), The 17 distinctive P;,j(f1)s are given by:

P.,-4(f1) = -(P+ 1)2,

PI._'(P) = 4(3P2-2P+3),

p, .• (fJ) = 2(lIfJ2-38fJ+ II),

P'.4(P) = -(9p2-14p+9),

P3•D(P) = -2(fJ-I)(3fJ-I),

PJ,4(P} = -(P-I)(P-7),

P9.-. (P) = 32(P-I),

PdfJ) = 16(fJ-I)(3P-4),

P9,4(P) = 16(P-I)(fJ-2),

p,,-J(P) = (fJ-I)2,

PI.D(fJ) = -2(7fJ2_18P+7),

PdP) = 4(7fJ'-IOP+7),

PJ.- 4(fJ) = -(P-I)(P+ I),

PJ.,(P) = -2(P-I)(3fJ+5),

P.,-2(P) = 16fJ(P-I),

P9•D(fJ) = 16(fJ-I)(3P-2),

PdfJ) = -32(P-I)(2P-I),

APPENDIX B: THE EXPRESSION '1'(.1., '1, P, IX) FOR THE TWO-PLY PLATE

'1'(.1., '1, fJ, IX) can be expressed as

'1'(.1., '1, P, IX) = AHPA,

where

H = H(A, '1, IX) = {cosh ('1"D), cosh ('1".), ' , , ,cosh '1" 12)},

and P is a 13 by 14 matrix with entires P;,j(fJ)

P = [P;.j(f1)]13x .4'

The K; = K;(A, IX) (i = 0"",12) are given by

KD = 0,

(8.1)

(8.2)

(B.3)

(8.4)

(8.5)

K. = (.1.+ I),

"J = (A-21X+1),

"5 = (2IXA-A+ I),

"7 = (A-I)(21X-1),

K9 = (.1.+ I)IX,

K" = (.1.+ I)(I-IX),

K2 = (A+21X-1),

K4 = (A-I),

K. = (A+I)(21X-1),

"8 = (2IXA-A-I),

K'D = (A-I)IX,

K'2 = (A-I)(I-IX),
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Table D.l. The elements of the matrix P of (D.l) for the two-ply plate

iSi -6 -5 -4 -3 -2 -I 0

0 0 0 0 * 0 256P4,7 0
I -P4.- 6 P4.7 -P4.- 4 P4. -, -P4.-, 63P4.7 -P4.0

2 * -P4.7 6P'. __ 4 -2P4,7 IIP,._6 P4.7 -12P,._6
3 -P,.-6 -P4.7 -6P'._4 -2P4.7 -liP,. -6 P4.7 12P,._6
4 * P4.7 * * 63P4,7
5 P,.-6 -P4.7 6P,._4 -2P.., IIP,._6 P4,7 -12P,._6
6 -P4.7 P4.7 -6P4,7 ISP.., -27P.., 63P.., -116P. 7

7 p •. 7 P4.7 6P4,7 ISP4. 7 27P 4,7 63P4,7 116P4,7
S -P,.-6 -P4,7 -6P,._. -2P.., -IIP,._6 p •. 7 12P,. _6
9 0 0 * -2P,I._. * -12SP4,7 *

10 0 0 -p•. -. -2P
'
I._4 -p•. -, -128P4,7 -p•.o

11 0 0 * -2P•. _. * -128P4,7 *12 0 0 -P II .-. -2P•. _. -PII .-, -128P.., - P II . O

\i 2 3 4 5 6 7

0 * 0 768P4.7 0 * 0 0
I P 4. 1 -P4., 223P•. 7 -p•.4 p •. s -P4.6 P..,
2 20P4,7 -4IP,._6 -3IP4,7 38P,._ 6 14P4,7 -3P,.._6 -P4,7
3 20P4.7 4IP,._6 -3IP4,7 -38P,._6 14P4,7 3P,.6 -P4,7
4 * * 223P4.7 * * * *
5 20P4.7 -4IP,._6 -3IP4,7 38P,._6 14P4. 7 -3P,.-6 -Po
6 140P.., -183P4,7 223P4.7 -166P4,7 66P4,7 -13P4,7 p •. 7

7 I40P4.7 I83P.., 223P•. 7 I66P.., 66P.., 13P4.7 p •. 7

8 20P•. 7 4IP,._6 -3IP.., -38P,._6 14P.., 3P,.-6 -P..,
9 * * - 384P.., * * * 0

10 p •. 1 -p•. , -384P4.7 -p•.4 P9,S -p•. 6 0
II * * - 384P.., * * 0
12 P II . I - P II ., -384P4.7 -P II .4 P

"
.S -P, 1.6 0

The particular values for the Pi.j(P)s are given in Table D.I [in terms of 31 distinctive p,.j(P)s that are denoted by
*]. The 31 distinctive p,.;(P)s are:

PO.-] = -64P,

p o.s = 256p'-578p+256,

p •. - 6 = P'+2P+ I.

p •. _, = 18P'-4P+IS,

P4.0 = 116P'-184P+ 116,

P4., = 183p'-49Sp+183,

Po = 66p' -100P+66,

P4,7 = P'-2P+1.

p •. _, = 32P' -112P + 80,

p •. I = - 320P' + 704P - 384,

p •.4 = 256P' - 592P + 336,

p •. 6 = 32p'-48p+16,

P II ._, = 80P'-112P+32,

P 11.1 = - 384P' + 704P - 320,

P 11.4 = 336P' - 592P + 256,

P II . 6 = 16P'-48P+32.

P0.1 = 768p' - 1408P + 768,

P'.-6=P'-1.

p •. - 4 = 6p'-4p+6,

p •._, = 27P'-58P+27,

p •. 1 = 140P'-344P+ 140,

P4.• = 166P'-260P+ 166,

p •. 6 = 13p'-22P+13,

p •. _. = -16P+ 16,

p •.o = 256p' -416P + 160,

p •. , = 448p'-864p+416,

P9.5 = -160p'+288p-128,

P II ._. = 16P'-16P,

PliO = 160P'-416P+256,

P, 1.2 = 416p' -864P+448,

P II ., = -128P'+28Sp-160,


